skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Green, Gregory M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We presentAugustus, a catalog of distance, extinction, and stellar parameter estimates for 170 million stars from 14 mag <r< 20 mag and with ∣b∣ > 10° drawing on a combination of optical to near-infrared photometry from Pan-STARRS, 2MASS, UKIDSS, and unWISE along with parallax measurements from Gaia DR2 and 3D dust extinction maps. After applying quality cuts, we find 125 million objects have “high-quality” posteriors with statistical distance uncertainties of ≲10% for objects with well-constrained stellar types. This is a substantial improvement over the distance estimates derived from Gaia parallaxes alone and in line with the recent results from Anders et al. We find the fits are able to reproduce the dereddened Gaia color–magnitude diagram accurately, which serves as a useful consistency check of our results. We show that we are able to detect large, kinematically coherent substructures in our data clearly relative to the input priors, including the Monoceros Ring and the Sagittarius Stream, attesting to the quality of the catalog. Our results are publicly available at doi:10.7910/DVN/WYMSXV. An accompanying interactive visualization can be found athttp://allsky.s3-website.us-east-2.amazonaws.com. 
    more » « less
  2. Abstract Deep optical and near-infrared imaging of the entire Galactic plane is essential for understanding our Galaxy’s stars, gas, and dust. The second data release of the Dark Energy Camera (DECam) Plane Survey extends the five-band optical and near-infrared survey of the southern Galactic plane to cover 6.5% of the sky, ∣ b ∣ ≤ 10°, and 6° > ℓ > −124°, complementary to coverage by Pan-STARRS1. Typical single-exposure effective depths, including crowding effects and other complications, are 23.5, 22.6, 22.1, 21.6, and 20.8 mag in g , r , i , z , and Y bands, respectively, with around 1″ seeing. The survey comprises 3.32 billion objects built from 34 billion detections in 21,400 exposures, totaling 260 hr open shutter time on the DECam at Cerro Tololo. The data reduction pipeline features several improvements, including the addition of synthetic source injection tests to validate photometric solutions across the entire survey footprint. A convenient functional form for the detection bias in the faint limit was derived and leveraged to characterize the photometric pipeline performance. A new postprocessing technique was applied to every detection to debias and improve uncertainty estimates of the flux in the presence of structured backgrounds, specifically targeting nebulosity. The images and source catalogs are publicly available at http://decaps.skymaps.info/ . 
    more » « less
  3. null (Ed.)
    ABSTRACT The North Polar Spur (NPS) is one of the largest structures observed in the Milky Way in both the radio and soft X-rays. While several predictions have been made regarding the origin of the NPS, modelling the structure is difficult without precise distance constraints. In this paper, we determine accurate distances to the southern terminus of the NPS and towards latitudes ranging up to 55°. First, we fit for the distance and extinction to stars towards the NPS using optical and near-infrared photometry and Gaia Data Release 2 astrometry. We model these per-star distance–extinction estimates as being caused by dust screens at unknown distances, which we fit for using a nested sampling algorithm. We then compare the extinction to the Spur derived from our 3D dust modelling with integrated independent measures from XMM–Newton X-ray absorption and H i column density measures. We find that we can account for nearly 100 per cent of the total column density of the NPS as lying within 140 pc for latitudes >26° and within 700 pc for latitudes <11°. Based on the results, we conclude that the NPS is not associated with the Galactic Centre or the Fermi bubbles. Instead, it is likely associated, especially at higher latitudes, with the Scorpius–Centaurus association. 
    more » « less
  4. Accurate distances to local molecular clouds are critical for understanding the star and planet formation process, yet distance measurements are often obtained inhomogeneously on a cloud-by-cloud basis. We have recently developed a method that combines stellar photometric data with Gaia DR2 parallax measurements in a Bayesian framework to infer the distances of nearby dust clouds to a typical accuracy of ∼5%. After refining the technique to target lower latitudes and incorporating deep optical data from DECam in the southern Galactic plane, we have derived a catalog of distances to molecular clouds in Reipurth (2008, Star Formation Handbook, Vols. I and II) which contains a large fraction of the molecular material in the solar neighborhood. Comparison with distances derived from maser parallax measurements towards the same clouds shows our method produces consistent distances with ≲10% scatter for clouds across our entire distance spectrum (150 pc−2.5 kpc). We hope this catalog of homogeneous distances will serve as a baseline for future work. 
    more » « less